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What is pyrolysis?

Burning of solids can be separated in two phases:

e Thermochemical decomposition of solid material and phase
change from solid to gas phase (Pyrolysis)
e Chemical reaction in the gas phase (Combustion)

To predict fire spread, we need to model burning of solids, hence
pyrolysis.



Pyrolysis

Figure 1. [Schematic of pyrolysis [12]]




How do we model pyrolysis?

Boundary condition
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Parameter overview

Parameter
Activation energie E,
Pre-exponential factor A
Reaction order n
Density 0

Conduction coefficient £
Heat capacity C




How do we get these parameters?

Find parameters with small scale experiments and mathematical
fitting, scale up to parts and devices

Usual experiments:

e Thermogravimetrical analysis
e Cone calorimeter
e Micro combustion calorimeter



Approaches

e Forwad fitting

= Basic graphical fitting [5, 6, 10]
= Advanced automated fitting [3]

e Inverse modeling [11]

= Optimization algorithms [1, 8]
= Machine learning



History of my presentations at PhD semi-
nar

e Optimization algorithms in fire simulation (Geneva, 2017)

e Progress on using optimization algorithms in fire simulation
(Wuppertal, 2017)

e No more hacks and workarounds? - Get your data processing
straight with a little help from your friends (Berlin, 2018)



New approach

Machine Learning (supervised)

e Neural networks
e Ensemble learning
e Stochastic regression



Supervised learning concept

Unsupervised Learning
(Clustering Algorithm)

Supervised Learning
(Classification Algorithm)
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Figure 2. Supervised vs. unsupervised learning
(https:/blog.westerndigital.com/machine-learning-pipeline-
object-storage/)



Method

e Train a model to predict reaction kinetic parameters with
given reaction rate

e Case study: mockup TGA experiment with constant heating
rate

e All data used is randomly generated with the pyrolysis model



Direct Modelling

Inverse Modelling
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Figure 3. Invers modelling then



Method I
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Process

1. Generating sample data set with the regarding model

e Samples for 1, 2 and 3 reactions, with 3 heating rates
applied each
e Up to 500k samples generated, with »(T") and A,,, Ey,

2. Splitting data set in two independent sets (75 % training data
set and 25 % validation data set)



Process ||

3. Train model with training data set
o Input: r(T)¢rain
e Output: An,train’ En,train
e Model adopts to transform input to output

4. Validate trained model by feeding (1) ,rescriveq Of Validation
data set and check for expected outcome



Process ||

5. Recalculate (1) predictea With A,,, E,,, calculate RMSE
between T(T)’Ual’ida,t’iO’l’L and T(T)predicted



Process |V

6. Evaluate
/. Repeat with different algorithms and different
hyperparameter settings



Results

e Results for predicting kinetic parameters for 2 reactions with 3
heating rates tested
e Different algorithms with different hyperparameter settings

s AdaBoost (ADA) [4], Extra Trees (ET) [7], Random Forests
(RF)[2], Stochastic Gradient Descent (SGD) [9]

e Sample size 100k...500k (total)
o Total generated inverse models: 1200



Results I
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Figure 5. Model results with RMSE fit < 10~ for 2 reactions
with 3 heating rates
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Figure 6. Random example with ET



Advantages over other meth-
ods

e Trained model is fast (instant result)
e Trained model is portabel
e Results are pretty good (by now in 43 % of presented case)

m better for 1 reaction
s worse for 3 reactions

e |f no perfect fit was found, it is at least a good starting point
for other methods



Disadvantages over other methods

e Generating samples is costly
e Training a model is costly
e Results are only good in 43 % of presented case



What is ET7

Extremely randomized trees (Extra trees) is a tree based
ensemble method and a modified variant of random forest
Uses randomized, uncorrelated decision trees

Efficient for big data sets

Fast training



Outlook

e Couple with Heat conduction

e Use larger sample data sets

e Try with different Pyrolysis models

e Validate with real data

e Compare to other machine learning models
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